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Abstract—In an edge-cloud system, mobile devices can offload
their computation intensive tasks to an edge or cloud server
to guarantee the quality of service or satisfy task deadline
requirements. However, it is challenging to determine where tasks
should be offloaded and processed, and how much network and
computation resources should be allocated to them, such that
a system with limited resources can obtain a maximum profit
while meeting the deadlines. A key challenge in this problem is
that the network and computation resources could be allocated on
different servers, since the server to which a task is offloaded (e.g.,
a server with an access point) may be different from the server on
which the task is eventually processed. To address this challenge,
we first formulate the task mapping and resource allocation
problem as a non-convex Mixed-Integer Nonlinear Programming
(MINLP) problem, known as NP-hard. We then propose a zero-
slack based greedy algorithm (ZSG) and a linear discretization
method (LDM) to solve this MINLP problem. Experiment results
with various synthetic tasksets show that ZSG has an average of
2.98% worse performance than LDM with a minimum unit of
5 but has an average of 6.88% better performance than LDM
with a minimum unit of 15.

Index Terms—multi-resource mapping and allocation, deadline
requirements, edge-cloud computing

I. INTRODUCTION

Compute intensive tasks are rapidly emerging with the
development of Internet of Things and Artificial Intelligence
technologies, and this coupled with the deadline requirements
of time-critical tasks, introduce a big challenge for systems.
For example, in autonomous driving applications, tasks such
as object detection and localization fall into this category,
and the vehicles (end devices) are required to service these
tasks while meeting their deadlines. The multi-layer edge-
cloud system is often deployed to enhance the end devices’
capability of handling such tasks, and such capability will
be increased further with the advent of wireless technologies
that are capable in handling strict deadlines such as 5G-
URLLC [1].

In a multi-layer edge-cloud system, tasks can be offloaded
from end devices to access points, and then forwarded to
servers for timely processing. Servers that are located far
away from the end devices, which results in significant data
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transmission latency, are called cloud servers. Servers that are
deployed collectively with access points to provide a quick re-
sponse to end devices are called edge servers. The computation
capacity of a cloud server is usually much greater than that
of an edge server. If the tasks received by access points have
significant demand for computation resource, the collectively
deployed edge servers may not have enough computation
resource to finish these tasks by their deadlines. In such a case,
the access points can forward the tasks with high computation
resource demand to cloud servers for processing.

End devices communicate with access points through a
wireless network, and access points communicate with servers
through a wired backhaul network that has a much larger
bandwidth capacity than the wireless network. Due to the
limited wireless bandwidth and computation resource, it is
challenging to determine where the tasks should be offloaded
and processed (task mapping problem), and how much band-
width and computation resource should be allocated to them
(resource allocation problem), to maximize system profit while
meeting task deadlines. This problem is further compounded
by the fact that the access point that a task is offloaded to and
the server that it is eventually processed on may be deployed
at different locations. An access point will allocate bandwidth
to tasks that are offloaded to it, and a server will allocate
computation resource to tasks that are processed on it.

In this paper, we formulate the above problem as a non-
convex MINLP. Nonconvexity arises due to the deadline
constraint, since the allocated wireless bandwidth (respectively
computation) has an inverse relation to the time taken for
offloading (respectively processing). In our model, end devices
can offload tasks to one of several nearby access points using
the allocated wireless bandwidth, and each task can be pro-
cessed on any reachable server using the allocated computation
resource. Besides, there is an additional transmission delay
incurred by the task if the offloading access point and the
processing server are deployed at different locations. This
introduces further challenges because the end-to-end deadline
now depends on three factors: 1) wireless bandwidth allocated
by the offloading access point, 2) transmission delay between
the offloading access point and the processing server, and 3)
computation resource allocated by the processing server. A
task mapping and resource allocation is deemed feasible in978-1-6654-3540-6/22/$31.00 © 2022 IEEE



this model if the task can be completed by its deadline with
the allocated bandwidth and computation resource, inclusive
of any transmission delays.

This paper aims to maximize the total system profit, where
each task can contribute to this profit only if its allocation
is feasible. From the literature on knapsack problems [2], the
above problem can be categorized as a Generalized Assign-
ment Problem (GAP) with fixed profit and bin-specific sizes
for each item, assuming either the wireless bandwidth or the
computation resource allocation is fixed. The intuition is that
in order to meet task deadlines, the allocation of bandwidth
and computation resource depends on the access point and
the server to which the task is mapped and the transmission
delay between them. Note that GAP is known to be NP-Hard
and more specifically APX-Hard [2]. The contributions of this
paper are as follows.

• We formulate the deadline-constrained task mapping and
resource allocation problem with communication and
computation contention as a nonconvex MINLP.

• We propose a zero-slack based greedy heuristic algorithm
(ZSG) for the above problem, and the resources allocated
to all provisioned tasks are just enough for these tasks
to be completed exactly at their respective deadlines.
We also propose a linear discretization method (LDM)
to reformulate the nonconvex MINLP problem into an
Integer Linear Programming problem, assuming that the
bandwidth and computation resources can only be allo-
cated in discrete units.

• We conduct experiments with synthetically generated
tasksets to evaluate the performance of the two proposed
methods. Results show that ZSG can obtain 2.98% less
profit than LDM with a minimum unit of 5 and 6.88%
more profit than LDM with a minimum unit of 15. Fur-
ther, the performance of LDM critically depends on the
size of the minimum discrete unit that can be allocated;
the achieved profit drops by 9.87% on an average when
the minimum unit is increased from 5 to 15.

Related Work. Few studies have considered this deadline-
constrained problem with both computation and communica-
tion contention, aimed at minimizing either the total system
cost or energy consumption [3], [4]. However, these studies
assumed that tasks could be directly offloaded to the servers
where they are processed, and hence the multi-resource con-
tention is modeled on the same server for each task. Other
studies have considered similar deadline-constrained problems
with either a fixed task to server mapping [5] or a fixed
resource allocation for each task [6]. Finally, a task mapping
and computation resource allocation problem with deadlines
has also been considered [7], but this study assumes that
the bandwidth allocated to all tasks for offloading is fixed.
A recent survey provides a comprehensive list of studies
that consider deadline-constrained problems under various
settings [8]. Thus, to the best of our knowledge, there is
no study in the literature that considers the problem setting
of allocating varying bandwidth and computation resource to
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Fig. 1. Edge-Cloud System Model

tasks by units (access points and servers) at different locations,
while having an end-to-end deadline requirement.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Edge-Cloud System Model

The multi-layer edge-cloud system comprises end devices,
access points and servers, as shown in Fig.1. End devices are
machines that have specific functionalities and can communi-
cate with access points through a wireless network. We denote
the set of tasks generated by end devices as I. Each task i,
where i ∈ I, has four associated parameters: {si, qi,∆i, pi}.
si is the amount of data to be offloaded by task i, qi is the total
number of CPU cycles required for task i, ∆i is the task end-
to-end deadline, and pi is the profit gained by completing task
i before its deadline. If task i misses its deadline, the system
will not get any profit from this task. Besides, we assume that
a task cannot be split, i.e., it must be entirely offloaded to one
access point and processed on one server. We also assume that
the tasks can only be processed on servers, and therefore must
necessarily be offloaded to derive profit.

Access Points are located near end devices and can collect
tasks from end devices within their coverage area through
wireless communication. After receiving tasks from end de-
vices, access points will forward these tasks to servers for
processing through the backhaul network. We denote the
access point set as A. Each task is covered only by a subset
of access points, and we denote the access point subset that
supports task i offloading as Ai. The wireless bandwidth
capacity of an access point j ∈ A is denoted as bj .

Servers are units that process tasks forwarded from ac-
cess points through a backhaul network. Compared with end
devices, servers have a much greater computation resource
capacity and can assist the end devices in processing compu-
tation intensive tasks. Note that the servers that are deployed
collectively with access points are called edge servers, and
the servers that are deployed far away from access points
are called cloud servers. Compared with cloud servers, edge
servers can provide a quicker response to end devices, but
usually have a smaller computation resource capacity. We
denote the server set as N . The computation resource capacity
of a server k ∈ N is denoted as ck.



We assume that the backhaul network between access
points and servers is wired, and therefore can support data
transmission with constant delay irrespective of the data size,
i.e., the available bandwidth in this network is sufficiently
large. We denote the transmission delay between an access
point j and a server k as δjk, where δjk = δkj and δjk = 0
when access point j and server k are collectively deployed.

B. Problem Formulation

We use a binary variable xij to denote the offloading
decision for task i. xij = 1 if and only if task i is offloaded to
access point j ∈ Ai. Similarly, we use a binary variable yik to
denote the processing decision of task i. yik = 1 if and only if
task i is processed on server k ∈ N . Furthermore, we use the
variable bij to denote the amount of wireless bandwidth that
will be assigned to task i by access point j, and the variable
cik to denote the amount of computation resource that will
be assigned to task i by server k. A summary of the notation
used in this paper is provided in Table I.

The total time taken to complete a task i, denoted as Ti, con-
sists of four parts: task offloading time T o

i , data transmission
time in the backhaul network T c

i , task processing time T p
i , and

the result return time. Normally, the data size of the result is
negligible, so the time spent for result downloading from ac-
cess points to end devices is assumed constant, and is deducted
from the task deadline. In other words, the result return time is
assumed to be equal to T c

i after the result downloading time is
deducted from the task deadline. If task i is offloaded to access
point j and processed on server k, T o

i = si/bij , T c
i = δjk,

and T p
i = qi/cik. Thus, the total time taken to complete task

i is given as Ti = T o
i +2×T c

i +T p
i = si/bij +2δjk + qi/cik.

Thus, the deadline-constrained task mapping {xij , yik} and
resource allocation {bij , cik} problem that aims to maximize
the total system profit can be formulated as follows.

(P0) max
∑
i∈I

∑
j∈Ai

∑
k∈N

xijyikpi (1)

subject to:∑
j∈Ai

xij
si
bij

+ 2
∑
j∈Ai

∑
k∈N

xijyikδjk

+
∑
k∈N

yik
qi
cik
≤ ∆i, ∀i ∈ I

(1a)

∑
j∈Ai

xij ≤ 1, ∀i ∈ I (1b)∑
j∈A\Ai

xij = 0, ∀i ∈ I (1c)

∑
k∈N

yik ≤ 1, ∀i ∈ I (1d)∑
i∈I

xijbij ≤ bj , ∀j ∈ A (1e)∑
i∈I

yikcik ≤ ck, ∀k ∈ N (1f)

xij , yik ∈ {0, 1}, ∀i ∈ I, ∀j ∈ A, ∀k ∈ N (1g)

TABLE I
NOTATION (PARAMETERS AND VARIABLES)

Notation Definition
I Taskset, where i ∈ I denotes a task
A Access point set, where j ∈ A denotes an access point
Ai Access point subset to which task i can be offloaded
N Server set, k ∈ N denotes a server
si Data size of task i
qi Total number of CPU cycles needed by task i
∆i Deadline of task i
pi Profit gained by completing task i within deadline
bj Bandwidth capacity of access point j
ck Computation resource capacity of server k
δjk Transmission delay between access point j and server k
bij Variable for wireless bandwidth assigned to task i by access

point j
cik Variable for computation resource assigned to task i by server

k
xij Binary offloading decision variable, xij = 1 if task i is

offloaded to access point j
yik Binary processing decision variable, yik = 1 if task i is

processed on server k

The constraint (1a) guarantees that the total completion time
of a task cannot exceed its deadline. Constraints (1b) and
(1c) ensure that a task can only be offloaded to at most one
access point in Ai. Constraint (1d) guarantees that a task can
only be processed on at most one server. Finally, constraints
(1e) and (1f) ensure that the total bandwidth or computation
resource assigned to all the tasks by an access point or a server
cannot exceed its bandwidth or computation resource capacity.
Because of the quadratic terms xijyik, xijbij and yikcik in
Eqs. (1), (1a), (1e) and (1f), the nonconvex terms (xij

1
bij

and yik
1
cik

) in Eq.(1a), and the binary variables xij and yik,
problem P0 is a nonconvex MINLP optimization problem.

III. ZERO-SLACK BASED GREEDY HEURISTIC (ZSG)

The zero-slack based greedy heuristic algorithm (ZSG) for
solving problem P0 comprises three main steps. First, the total
available time for each task i (its deadline ∆i) is distributed
into three parts: task offloading time T o

i , data transmission
time through the backhaul network 2×T c

i , and task processing
time T p

i . Given this distribution of total time, we calculate
the required bandwidth and computation resource for each
task i and for every possible access point-server pair (j, k).
Finally, we prioritize all the (i, j, k) options based on a metric,
and greedily allocate them whenever feasible. In ZSG, the
resources allocated to each provisioned task are just enough
for the task to be completed exactly at its deadline. This is
possible because any feasible solution of problem P0 can be
converted to a feasible solution that every provisioned task is
completed at its deadline without any profit loss.

Deadline Distribution: The deadline of task i is distributed
into three parts: T o

i , 2× T c
i , and T p

i . Since the resources are
allocated to tasks in the way that every provisioned task is
completed exactly at its deadline, T o

i + T p
i = ∆i − 2 × T c

i .
Suppose γijk denotes the fraction of T o

i + T p
i used for task i

offloading for a given access point-server pair (j, k). That is,
T o
i = γijk(∆i − 2× T c

i ) and T p
i = (1− γijk)(∆i − 2× T c

i ).



In ZSG, the value of γijk is given by,

γijk
1− γijk

=
( si
∆i

)/bj

( qi
∆i

)/ck
, ∀i ∈ I, ∀j ∈ Ai, ∀k ∈ N (2)

The main idea for determining γijk is that a task with a
relatively larger data size will require more time for task
offloading, and a task that needs relatively more CPU cycles
will require more time for task processing.

Resource allocation calculation: There exist many possible
access point-server pairs (j, k) to offload and process a task
i. Due to variations in δjk, the corresponding values for the
required bandwidth (bij) and computation resource (cik) to
meet the task deadline are also different for different (j, k)
pair. For an access point-server pair (j, k), suppose bijk and
cijk denote the bandwidth and computation resource that must
be allocated to task i for finishing the task at its deadline. For
a given γijk, to meet the end-to-end deadline ∆i of task i,
bijk and cijk can be calculated as follows.

bijk =
si

γijk(∆i − 2δjk)
, ∀i ∈ I, ∀j ∈ Ai, ∀k ∈ N (3)

cijk =
qi

(1− γijk)(∆i − 2δjk)
, ∀i ∈ I, ∀j ∈ Ai, ∀k ∈ N

(4)

Algorithm 1 Zero-Slack based Greedy Algorithm (ZSG)
Require: I,A,N , δ

1: P ← ∅;
2: for i ∈ I, j ∈ Ai, k ∈ N do
3: Calculate γijk, bijk, cijk based on Eqs. (2), (3), and (4);
4: Calculate pijk based on Eq. (5), P ← P ∪ {pijk};
5: end for
6: Sort all pijk values of set P in non-increasing order;
7: while P ≠ ∅ do
8: Determine the (i, j, k) option with the largest pijk ∈ P;
9: if bijk ≤ bj and cijk ≤ ck then

10: xij ← 1, yik ← 1, bij ← bijk, cik ← cijk;
11: bj ← bj − bijk, ck ← ck − cijk;
12: P ← P \ {pi′j′k′ |i′ = i, pi′j′k′ ∈ P};
13: else
14: P ← P \ {pijk};
15: end if
16: end while
17: return x,y,b, c

Prioritization of tasks and server pairs: Suppose option
(i, j, k) denotes the mapping of task i to the access point-
server pair (j, k). The priority of option (i, j, k) is denoted as
pijk, and given by the following equation.

pijk =
pi(

bijk
bj

)
×
(

cijk
ck

) , ∀i ∈ I, ∀j ∈ Ai, ∀k ∈ N (5)

The intuition behind this metric is that an option (i, j, k) with
a higher profit (pi) and lower resource usage (bijk and cijk)
should be given higher priority.

The detail steps of ZSG are presented in Algorithm 1. For
each (i, j, k) option, calculate γijk, bijk and cijk based on Eqs.
(2), (3) and (4), where i ∈ I, j ∈ Ai, k ∈ N (line 3). Then,
calculate pijk according to Eq. (5), and add pijk to set P (line
4). After all possible pijk values are calculated, sort these pijk
values in nonincreasing order (line 6). If set P is not empty, the
(i, j, k) option with the largest priority value (pijk) is chosen,
and the corresponding mapping and allocation are realized if
the resource capacity constraints on access point j and server
k are met (lines 7-11). Once a task is provisioned, all the
pijk values related to task i are removed from set P (line 12).
Otherwise, only pijk is discarded from set P and the algorithm
proceeds with the next (i, j, k) option with largest pijk value
in set P (line 14). The algorithm stops when set P is empty.

IV. LINEAR DISCRETIZATION METHOD (LDM)

In this section, we present a linear discretization method
(LDM) to solve the nonconvex MINLP problem P0 by re-
formulating it to an ILP problem. The LDM assumes that
minimum units exist for the allocation of bandwidth and
computation resource and any resource allocation will be an
integer multiple of corresponding minimum unit. Suppose the
minimum unit of bandwidth is denoted as b̃ and that for the
computation resource is denoted as c̃. In Problem P0, we now
replace terms as follows: bij by uij b̃ and cik by vik c̃ where uij

and vik are nonnegative integer variables, and bj by uj b̃ and
ck by vk c̃ where uj and vk are positive integer parameters.
Note that uj and vk are the upper bounds for uij and vik,
respectively, for all i ∈ I.

In the discretized version of problem P0 (as defined above),
the deadline constraint of Eq.(1a) can be rewrite as follows.∑

j∈Ai

xij
si

uij b̃
+ 2

∑
j∈Ai

∑
k∈N

xijyikδjk

+
∑
k∈N

yik
qi
vik c̃

≤ ∆i, ∀i ∈ I
(6)

Eq. (6) is still nonconvex because of the terms xij
1

uij
and

yik
1

vik
. To linearize these terms, the general idea is to dis-

cretize one variable and use the summation of finite linear
terms to replace the original nonconvex term [9]. Take xij

1
uij

as an example. The variable uij is mapped into a finite number
of possible values; this is feasible because uij is an integer
with a finite range. Each positive uij value is associated with a
new binary variable xijm ∈ {0, 1}, m ∈ {1, 2, . . . , uj}, where∑uj

m=1 xijm = xij ≤ 1. The variable xijm determines which
discrete value m is chosen by uij . xijm = 1 only when the
discrete value m is selected and in this case xij

1
uij

= xijm
1
m .

For the case when xij = 0,
∑uj

m=1 xijm = 0 and none of
the discrete values is selected. Note, when uij = 0, xij must
be 0 to satisfy the deadline constraint (6) and in this case as
well

∑uj

m=1 xijm = 0. Thus, the nonconvex term xij
1

uij
can

be redefined as follows.

xij
1

uij
=

uj∑
m=1

xijm
1

m
, ∀i ∈ I, ∀j ∈ Ai (7)



After the discretization of uij , we have

uij =

uj∑
m=1

xijmm ≤
uj∑

m=1

xijmuj ≤ xijuj . (8)

Using the same technique, we can also linearize the term
yik

1
vik

. Suppose each positive value of vik is associated with a
new binary variable yikn ∈ {0, 1}, n ∈ {1, 2, . . . , vk}, where∑vk

n=1 yikn = yik ≤ 1. Then, the nonconvex term yik
1

vik
can

be redefined as follows.

yik
1

vik
=

vk∑
n=1

yikn
1

n
, ∀i ∈ I, ∀k ∈ N . (9)

vik =

vk∑
n=1

yiknn ≤
vk∑
n=1

yiknvk ≤ yikvk. (10)

Eqs. (8) and (10) define the property that when task i is
not mapped to access point j or server k, where xij = 0 or
yik = 0, no corresponding resource will be assigned to task
i, which gives uij = 0 or vik = 0. Thus, constraints (1e) and
(1f) in the discretized version of Problem P0 can be rewritten
as follows.∑

i∈I
xijuij =

∑
i∈I

uij =
∑
i∈I

uj∑
m=1

xijmm ≤ uj , ∀j ∈ A (11)

∑
i∈I

yikvik =
∑
i∈I

vik =
∑
i∈I

vk∑
n=1

yiknn ≤ vk, ∀k ∈ N (12)

Thus far, we have transformed the nonconvex terms xij
1

uij

and yik
1

vik
into linear terms. In problem P0, there still exists

the quadratic term xijyik in the objective function (1) as well
as in constraint (6). For the quadratic term xijyik, we use
a new binary variable zijk ∈ {0, 1} to replace it. zijk = 1
only when task i is offloaded to access point j (xij = 1) and
processed on server k (yik = 1). Since

∑uj

m=1 xijm = xij

and
∑vk

n=1 yikn = yik, the binary variable zijk can be defined
using the following linear constraints [10].

zijk ≥
uj∑

m=1

xijm +

vk∑
n=1

yikn − 1,∀i ∈ I,∀j ∈ Ai,∀k ∈ N

(13)

zijk ≤
uj∑

m=1

xijm,∀i ∈ I,∀j ∈ Ai,∀k ∈ N (14)

zijk ≤
vk∑
n=1

yikn,∀i ∈ I,∀j ∈ Ai,∀k ∈ N (15)

zijk ∈ {0, 1},∀i ∈ I,∀j ∈ Ai,∀k ∈ N (16)

Eq.(13) ensures that zijk is 1 only when both xij and
yik are 1. Thus, the nonconvex MINLP problem P0 can
be reformulated as an ILP problem, under the assumption
that resources are allocated in integer multiples of minimum
resource units. Note that in the ILP problem, for given resource
capacities (bj and ck values), smaller values for b̃ and c̃
will result in increased values for uj and vk, thus increasing
the number of variables. Although this can improve solution
quality, it will also lead to increased runtime.

TABLE II
RANGES USED FOR VARIOUS PARAMETERS

Parameter Range
ck, k ∈ Cloud Servers 80 to 100
ck, k ∈ Edge Servers 40 to 60
bj , j ∈ A 40 to 100
δjk, j ∈ A, k ∈ N 0 to 10
|Ai|, i ∈ I 1 to 2
pi, i ∈ I 10 to 100
∆i, i ∈ I 2×δmax

jk +15 to 2×δmax
jk +45, or

2×δmean
jk +15 to 2×δmean

jk +45

V. EXPERIMENT

In this section, we present the experimental results that
evaluate the performances of ZSG and LDM. We generate a
variety of synthetic tasksets with different parameter settings
and provision them on a fixed edge-cloud architecture. The
algorithms are compared in terms of achieved system profit.

A. Taskset Generation

The number of access points and servers in the system are
fixed at 20 and 25, respectively. 20 of the 25 servers are edge
servers, which are deployed collectively with access points,
and the remaining 5 servers are cloud servers. Additionally, all
the parameters related to access points and servers, including
ck, bj and δjk, are randomly sampled integer values from a
pre-defined range in Table II. Note that only the δjk between
the collectively deployed access point j and server k is set
to 0. Cloud servers have larger computation resource capacity
than that of edge servers. Thus, the capacity range of the cloud
servers is from 80 to 100, and the capacity range of the edge
servers is from 40 to 60. These values are then kept fixed
throughout the experiments1.

For each task i ∈ I, its profit pi, deadline ∆i, and the
number of access points supporting task i offloading (|Ai|)
are also randomly sampled integer values from a pre-defined
range as shown in Table II. For cost concern, the deployment
of access points should avoid too many overlapping coverage
areas, thus, the number of access points each task can be
offloaded to ranges from 1 to 2. Given |Ai|, the access
points to which a task can offload are randomly chosen from
the 20 access points. Suppose δmax

jk = maxj∈A,k∈N (δjk)
and δmean

jk = meanj∈A,k∈N (δjk). The task deadlines are
sampled from two different ranges with equal probability. One
of them, [2 × δmax

jk + 15, 2 × δmax
jk + 45], uses the largest

access point to server transmission delay, representing tasks
that have relatively more time for offloading and processing.
Whereas the other, [2× δmean

jk +15, 2× δmean
jk +45], uses the

average access point to server transmission delay, and thus
represents tasks that have relatively less time for offloading
and processing. These task parameters are sampled repeatedly
when generating the tasks in each taskset.

1Although the edge-cloud architecture parameters are fixed in all our
experiments, the taskset parameters are varied across a wide range to evaluate
the performance of the algorithms for different resource usage scenarios.



To synthesize tasksets with varying levels of resource usage,
we generate tasks with varying bandwidth and computation
resource utilizations (amount of resource required in a given
time interval). This in effect varies the qi and si values for each
task i. For the time interval, we use τi = ∆i−2×δmean

jk , which
roughly captures the amount of time available to complete both
offloading and processing. Thus, for wireless bandwidth, the
utilization of a task i offloading to an access point j, ubji,
is defined as ubji = si/(bj × τi). Similarly, for computation
resource, the utilization of a task i, uci, is defined as uci =
qi/(mink∈N ck × τi). For feasibility, we assume ubji and uci
are always less than or equal to 1.

To generate tasksets, we consider a different number
of tasks in each taskset ({40, 60, 80, 100, 120}). For the
wireless bandwidth, we consider different values for the
total bandwidth utilization of each access point (ub ∈
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}). Similarly, for the compu-
tation resource, we consider different values for the to-
tal compute utilization of the entire edge-cloud system
(uc ∈ {1, 5, 9, 13, 17, 21, 25, 29, 33, 35.50}), where 35.50 =∑

k∈N ck/mink∈N ck since we normalize uc by mink∈N ck.
For each combination of these three parameters (400 in all),
we generate 30 tasksets, resulting in a total of 12, 000 different
tasksets.

To generate a single taskset, given the values for ub, uc
and the number of tasks, we first generate the profit pi,
deadline ∆i and access point set Ai for each task i as
described earlier. Then, for each access point j ∈ A, given
total utilization ub × bj and the tasks that can be offloaded
to that access point (denoted by set Ij), we use an existing
algorithm called Uunifast [11] to generate the task bandwidth
utilization values ubji such that ub =

∑
i∈Ij

ubji. This
algorithm efficiently generates the task utilization values using
uniform random sampling and without any bias. Since a task
i can be within the coverage area of more than one access
point, it can have different ubji values assigned to it by
this algorithm for each feasible access point j. Therefore,
we set its data size si as the maximum obtained from those
values given by maxj∈Ai

(ubji × bj × τi). Finally, given total
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Fig. 2. Performance with varying percentage of computation intensive tasks

computation resource utilization uc, we use another existing
algorithm called Stafford’s Randfixedsum [12] to generate the
tasks’ computation resource utilization values uci such that
uc =

∑
i∈I uci. This algorithm uses similar techniques as

Uunifast and generates uniformly random and unbiased task
utilization values even when the total computation resource
utilization uc is greater than 1. We also restrict each uci to be
no more than 1 to ensure that the compute requirement qi of
every task i ∈ I can be satisfied by any server.

For LDM, we consider two different values for the minimum
units (c̃ and b̃), 5 and 15, and denote the corresponding
LDM as LDM-5 and LDM-15. Once c̃ and b̃ are fixed, vk
and uj in Eqs. (11) and (12), are set as ⌊ck/c̃⌋ and ⌊bj/b̃⌋,
respectively. Besides, since the runtimes of the algorithms are
generally proportional to the number of tasks in a taskset, we
also partition the tasksets based on this number and allocate
runtimes to LDM-5 (likewise LDM-15) to be 600 (likewise
200) times the maximum observed runtime for ZSG within
each partition. This ensures a fair comparison because LDM-
5 has three times more variables than LDM-15 and the ILP
solver generally requires orders of magnitude more time than
the ZSG heuristic. Experiments were run on a desktop PC
with Intel Xeon(R) Gold 5220R 2.2GHz CPU and 128GB of
RAM, and Gurobi was used as the ILP solver of LDM2.

B. Discussion of Results

To visualize the results, we have categorized tasksets based
on the resource usage intensity of tasks. A task i is identified
to be computation intensive if qi/τi is more than 20% of
the minimum ck value. Likewise, a task is identified to be
bandwidth intensive if si/τi is more than 20% of the minimum
bj value among all j ∈ Ai. The profit gain ratio is used to
compare the performances of different algorithms, which is the
ratio of the total profit of tasks provisioned by the algorithm
to the total profit of all tasks in the taskset.

profit gain ratio =
total profit of provisioned tasks

total profit of all tasks in the taskset

Results for tasksets with varying levels of computation
and bandwidth intensive tasks are shown in Figs. 2 and 3,
respectively. In these plots, x-axis denotes the percentage of
resource intensive tasks in the taskset, and y-axis denotes
the profit gain ratio. For each algorithm the figures show a
standard box-plot, with the line (likewise dot) inside the box
denoting median (likewise mean). As can be seen from these
figures, the performance of ZSG is close to LDM-5 when
the percentage of resource intensive tasks is small, but this
gap widens as the percentage increases. LDM-5 obtains an
average of 2.98% more profit than ZSG for the considered
tasksets. This is expected because tasksets with a higher
percentage of resource intensive tasks are usually harder to
provision, and in these cases, LDM-5 with a standard ILP
solver performs better. Note that although LDM-5 outperforms
ZSG, their performance gap is small. This is because the

2Experiments code is available at https://github.com/CPS-research-
group/CPS-NTU-Public/tree/GLOBECOM2022.
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Fig. 3. Performance with varying percentage of bandwidth intensive tasks
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Fig. 4. Performance with varying taskset size

minimum resource units and running time of the ILP solver
limit the performance of LDM-5. It can also be observed that
the performances of both LDM-5 and ZSG are better than
LDM-15. On average, LDM-5 and ZSG obtain 9.87% and
6.88% more system profit than LDM-15, respectively. This
shows that the performance of LDM critically depends on the
granularity of discretization.

We have also compared the performance of ZSG and
LDM with varying taskset sizes, and this result is shown in
Fig. 4. Interestingly, the performance of LDM-15 decreases
significantly with the increase in taskset size, whereas that
of ZSG and LDM-5 reamins the same. As the taskset size
increases, the resource requirement of each task generally
decreases, thus increasing the resource loss incurred in LDM
due to discretization (and hence decreasing achieved profit).
The larger base unit in LDM-15 results in a more significant
resource loss during task provision and causes LDM-15 to
perform worse than LDM-5 and ZSG.

VI. CONCLUSION

This paper addressed a deadline-constrained multi-resource
task mapping and allocation problem for an edge-cloud sys-
tem. A key challenge of the problem was the allocation of
resources on two different units (access point and server)
for the same task with an end-to-end deadline. Two effective

methods, called ZSG and LDM, were proposed to determine
the task mapping and allocation of wireless bandwidth and
computation resources. Experimental results demonstrated the
efficiency of the proposed methods when dealing with tasksets
with a variety of resource requirements. Although LDM with
smaller minimum resource units outperformed ZSG, the ILP
solver of LDM generally required orders of magnitude more
time than ZSG. Thus, ZSG is superior to LDM in large-scale
system, and LDM is preferred if the system has hardware
acceleration for the ILP solver or requires the solution with a
high profit gain ratio.

In this paper, we assume that the data transmission latency
is independent of the data size in the backhaul network,
which might limit the application of the proposed edge-cloud
system in real-world systems. In the future, we would like
to explore an edge-cloud system where the data size affects
data transmission latency in the backhaul network. Besides, we
would also like to explore a distributed and online solution
for the presented problem, specifically considering resource
scheduling over time.
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